Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part III: The nonlinear case

نویسندگان

  • Winfried Auzinger
  • Harald Hofstätter
  • Othmar Koch
  • Mechthild Thalhammer
چکیده

The present work is concerned with the efficient time integration of nonlinear evolution equations by exponential operator splitting methods. Defect-based local error estimators serving as a reliable basis for adaptive stepsize control are constructed and analyzed. In the context of time-dependent nonlinear Schrödinger equations, asymptotical correctness of the local error estimators associated with the first-order Lie–Trotter and second-order Strang splitting methods is proven. Numerical examples confirm the theoretical results and illustrate the performance of adaptive stepsize control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case

We introduce a defect correction principle for exponential operator splitting methods applied to time-dependent linear Schrödinger equations and construct a posteriori local error estimators for the Lie–Trotter and Strang splitting methods. Under natural commutator bounds on the involved operators we prove asymptotical correctness of the local error estimators, and along the way recover the kno...

متن کامل

Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II. Higher-order methods for linear problems

In this work, defect-based local error estimators for higher-order exponential operator splitting methods are constructed and analyzed in the context of time-dependent linear Schrödinger equations. The technically involved procedure is carried out in detail for a general three-stage third-order splitting method and then extended to the higher-order case. Asymptotical correctness of the a poster...

متن کامل

On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations

We give an error analysis of Strang-type splitting integrators for nonlinear Schrödinger equations. For Schrödinger-Poisson equations with an H4-regular solution, a first-order error bound in the H1 norm is shown and used to derive a second-order error bound in the L2 norm. For the cubic Schrödinger equation with an H4-regular solution, first-order convergence in the H2 norm is used to obtain s...

متن کامل

A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations

This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...

متن کامل

Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations

In this work, the error behavior of operator splitting methods is analyzed for highly-oscillatory differential equations. The scope of applications includes time-dependent nonlinear Schrödinger equations, where the evolution operator associated with the principal linear part is highly-oscillatory and periodic in time. In a first step, a known convergence result for the second-order Strang split...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 273  شماره 

صفحات  -

تاریخ انتشار 2015